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Abstract. Let F be a non-Archimedean local field of characteristic zero.
Let G = GL(2, F ) and eG = fGL(2, F ) be the metaplectic group. Let τ be the

standard involution on G. A well known theorem of Gelfand and Kazhdan says

that the standard involution takes any irreducible admissible representation of
G to its contragredient. In such a case, we say that τ is a dualizing involution.

In this paper, we show that any lift of the standard involution to eG is also a

dualizing involution.

1. Introduction

Let F be a non-Archimedean local field of characteristic 0 and G = GL(n, F ).
For g ∈ G, we let g> denote the transpose of the matrix g, and w0 to be the matrix
with anti-diagonal entries equal to one. Let τ : G→ G be the map τ(g) = w0g

>w0.
It is easy to see that τ is an anti-automorphism of G such that τ2 = 1. We call
τ the standard involution on G. Let (π, V ) be an irreducible smooth complex
representation of G. We write (π∨, V ∨) for the smooth dual or the contragredient
of (π, V ). For β an anti-automorphism of G such that β2 = 1, we let πβ to be the
twisted representation defined by

πβ(g) = π(β(g−1)).

The following theorem is an old result of Gelfand and Kazhdan.

Theorem 1.1 (Gelfand-Kazhdan). Let τ be the standard involution on G. Then

πτ ' π∨.

We refer the reader to Theorem 2 in [2] for a proof of the above result.

If β is any anti-automorphism of G such that β2 = 1, and satisfies πβ ' π∨,
then we call β a dualizing involution. The above result implies that the standard
involution τ on G is a dualizing involution.

Let ÜG be the metaplectic cover of G (see Chapter 0 in [5] for the general defini-
tion). It is well known that (see Proposition 3.1 in [6]) the standard involution τ
on G has at least one lift to the metaplectic group. A natural and interesting ques-
tion that one can ask is whether the lifts of the standard involution are themselves
dualizing involutions.

In this paper, we address this question when ÜG = gGL(2, F ) is the metaplectic
double cover of G (explained later). In this case, it follows from Proposition 1 in

[4] that there are many lifts of the standard involution to ÜG. In particular, for each

α ∈ F×, we have a lift σα (see Section 5 for the definition) of τ to ÜG. We show
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that all these involutions are dualizing involutions. To be precise, we prove

Theorem 1.2 (Main Theorem). Let π be any irreducible admissible genuine rep-

resentation of ÜG. Then

πσα ' π∨.

The above result has prompted us to consider further generalizations of this
problem. To be precise, we would like to explore if a similar result can be proved
for the r-fold covering of GL(n) for r, n ≥ 2. However, explicit description of a lift
of the standard involution in the general case seems difficult. We hope to address
some of these questions in the near future.

The paper is organized as follows. In Section 2, we set up some preliminaries
on the Hilbert symbol and the metaplectic group. In Section 3, we recall a result
of Harish-Chandra about the character of an admissible representation and give
references for analogous results in the setting of metaplectic groups. We also recall
a few results about lifts of the standard involution. In Section 4, we explicitly define
a lift of the standard involution and discuss some properties. In Section 5, we prove
the main result of this paper.

2. preliminaries

In this section, we set up some preliminaries which we need and recall a few
results which will be used throughout this paper.

2.1. Quadratic Hilbert Symbol and its properties. Let F be a local field and
F× be the group of non-zero elements in F and let µ2 = {±1}. The quadratic
Hilbert symbol is a map

〈 , 〉 : F× × F× → µ2

defined by

〈a, b〉 =

¨
+1, if z2 − ax2 − by2 = 0 has a non-trivial solution in F 3

−1, otherwise
.

The following basic properties of the Hilbert symbol are well known. We record
it in the proposition below.

Proposition 2.1. The Hilbert symbol satisfies

1) 〈a, b〉 = 〈b, a〉 and 〈a, c2〉 = 1.
2) 〈a,−a〉 = 1 and 〈a, 1− a〉 = 1 if a 6= 1.
3) 〈a, b〉 = 1 implies 〈aa′, b〉 = 〈a′, b〉.
4) 〈a, b〉 = 〈a,−ab〉 = 〈a, (1− a)b〉.
5) 〈a, b〉 = 1 for all a ∈ F×, then b ∈ (F×)2.

We refer the reader to Chapter 3, Section 1 in [11] for the details.

2.2. Metaplectic Groups. In this section, we recall a few basic facts about cen-

tral extensions and define “the” metaplectic group ÜG.

Throughout, we write o for the ring of integers in F , p for the unique maximal
ideal in o and $ for the generator of p. We write kF for the finite residue field and
assume throughout that char(kF ) 6= 2. We write ord for the valuation on F .
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2.2.1. Central extensions. Let G be a group and A an abelian group. A group E is
called a central extension of G by A if there exists a short-exact sequence of groups,

S : 1→ A
i→ E

p→ G→ 1

such that the image of i is contained in the center of E. If

S′ : 1→ A
i′→ E′

p′→ G→ 1.

is another central extension, we say that S and S′ are isomorphic if there exists an
isomorphism f : E → E′ such that the following diagram commutes.

1 −−−−→ A
i−−−−→ E

p−−−−→ G −−−−→ 1??y1A

??yf ??y1G

1 −−−−→ A
i′−−−−→ E′

p′−−−−→ G −−−−→ 1

In fact, by the Five Lemma, if f is a homomorphism with this property, then it
is automatically a group isomorphism.

The central extension

1→ A
i→ E

p→ G→ 1

is called a topological central extension of G by A, if A, E and G are Hausdorff
(locally compact) topological groups such that

1) i is continuous and i(A) is a closed subgroup of the center of E and
2) p is continuous and induces a topological isomorphism E/i(A) ' G.

When A and G are locally compact topological groups, it is a well known fact
that the elements of the second cohomology group H2(G,A) (see Section 2 in [1] for
the definition) are in bijection with the isomorphism classes of topological central
extensions of G by A. We explain a part of this identification which will be relevant
to us in defining the metaplectic group which we work with.

For a 2-cocycle α, we denote by [α] the class of α in H2(G,A). Given [α] ∈
H2(G,A), we can construct a central extension of G by A using the following recipe.
Let Gα = G×A with the multiplication

(g1, ε1) · (g2, ε2) = (g1g2, α(g1, g2)ε1ε2), (g1, ε1), (g2, ε2) ∈ Gα.

Then, Gα is a group with the above multiplication. Further, the maps i : A →
Gα and p : Gα → G given by ε 7→ (1, ε) and (g, ε) 7→ g respectively are group
homomorphisms such that the sequence

1→ A
i→ Gα

p→ G→ 1

is a central extension of G by A associated with cohomology class [α].

If G, A are locally compact groups, a theorem of Mackey (see Theorem 2 in [9])
implies that there is a natural topology on Gα with respect to which it is a locally
compact group and defines a topological central extension of G by A.
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2.2.2. The Metaplectic group. The first explicit construction of a metaplectic cover
of GL(2, F ) was given by Kubota in [7] by concretely describing a 2-cocyle. For
g1, g2,m ∈ G, the following simpler version of the Kubota cocycle c : G×G → µ2

defined as

c(g1, g2) =

­
X(g1g2)

X(g1)
,

X(g1g2)

X(g2)∆(g1)

·
,

where

X(m) =

¨
m21 if m21 6= 0

m22 otherwise

was given by Kazhdan and Patterson in [6]. We take ÜG to be the central exten-
sion of G by µ2 determined by 2-cocycle c. Since G, µ2 are locally compact groups,

Mackey’s theorem (see Theorem 2 in [9]) implies that ÜG is a locally compact topo-

logical group and defines a topological central extension of G by µ2. The group ÜG
constructed above is called ”the” metaplectic group.

It can be shown that the topology on ÜG has a neighborhood base at the identity
consisting of compact open subgroups (see Lemma 3 in [4]). Before we give the
construction of this basis, we recall a few preliminaries.

A map ` : G → ÜG is called a section if p ◦ ` = 1G. Given a subgroup H of G,

we say that ÜG splits over H if there exists a homomorphism h : H → ÜG such that
p ◦ h = 1H .

Let ` : G → ÜG be the map `(g) = (g, 1). Then ` is a section and is called the

natural or preferred section. For g =

�
a b
c d

�
∈ G, let ∆(g) = det(g) and define

s : G→ µ2 as

s(g) =

¨
〈c, d∆(g)〉, if cd 6= 0 and ord(c) is odd

1, otherwise.
(2.1)

Let K = GL(2, o) be the maximal compact subgroup in G, and for λ ≥ 1,
let Kλ = 1 + $λ M(n, o). It is known that {Kλ}λ≥0 is a neighborhood base at
the identity element in G consisting of compact open subgroups. We can use this

base to define a neighborhood base at the identity in ÜG. Define κ : K → ÜG as

κ(k) = (k, s(k)). It can be shown that κ : K → ÜG is a homomorphism such that

p ◦ κ = 1K , (i.e., ÜG splits K). Let K∗ = κ(K) and for λ ≥ 1, K∗λ = K∗ ∩ p−1(Kλ).

It can be shown that {K∗λ}λ≥0 is a neighborhood base at the identity in ÜG.

3. Some results we need

3.1. Character of an admissible representation. Let F be a non-Archimedean
local field of characteristic 0 and G = G(F ) be a connected reductive algebraic
group defined over F . We let (π, V ) be an irreducible smooth complex representa-
tion of G. It can be shown that such representations are always admissible. For
an admissible representation (π, V ), we can define a suitable notion of a character.
Before we proceed further, we set up some notation and recall an important result
of Harish-Chandra.

Throughout we let G = G(F ) and (π, V ) to be an irreducible smooth represen-
tation of G. We let C∞c (G) to be the space of all locally constant complex valued

4



functions on G with compact support. For f ∈ C∞c (G), we let π(f) : V → V denote
the linear operator given by

π(f)v =

Z
G
f(g)π(g)vdg, v ∈ V,

where the integral is with respect to a Haar measure on G which we fix throughout.
If (π, V ) is an admissible representation, it can be shown that the trace of the
operator π(f) is finite for all f ∈ C∞c (G). The resulting linear functional

Θπ : C∞c (G) −→ C

given by

Θπ(f) = Tr(π(f))

is called the distribution character of π. It determines the irreducible representa-
tion π up to equivalence, i.e., if Θπ1

(f) = Θπ2
(f), ∀f ∈ C∞c (G), then π1 ' π2.

We now state a theorem of Harish-Chandra which is used to define the character
of the representation π.

Let Greg be the subset of regular semi-simple elements in G. It can be shown
that Greg is an open dense subset of G whose complement has measure zero. The
following is a deep result of Harish-Chandra.

Theorem 3.1 (Harish-Chandra). There exists a locally integrable complex valued
function Θπ on G such that Θπ|Greg is a locally constant function on Greg and
satisfies

Θπ(f) =

Z
G
f(g)Θπ(g)dg, ∀f ∈ C∞c (G).

Also, for x ∈ Greg, y ∈ G, we have

Θπ(yxy−1) = Θπ(x).

We refer the reader to [3] for a proof of the above result. The locally constant
function Θπ on Greg in the above theorem is called the character of π.

Let ÜG be a locally compact topological central extension of G by µ2, where µ2,
is the group of square roots of unity in F . Let ξ : µ2 → C× be the non-trivial

character of µ2. Let (π, V ) be an irreducible admissible representation of ÜG. π is

called a genuine representation, if for ε ∈ µ2, g ∈ ÜG, we have

π(εg) = ξ(ε)π(g).

The above result of Harish-Chandra also holds in this setting. To be more precise,
it can be shown that the distribution character of an irreducible admissible genuine

representation of ÜG is represented by a locally integrable function Θπ on ÜG which

is locally constant on ÜGreg = p−1(Greg) and satisfies

Θπ(y−1xy) = Θπ(x), for x ∈ ÜGreg, y ∈ G.

We refer the reader to Theorem 4.3.2 and Corollary 4.3.3 in [8] where results
about character theory for metaplectic groups is discussed. See also Theorem I.5.1
in [6] where the result is just mentioned.
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3.2. Some Results about lifts of the standard involution. We recall a few
results from [4] which we need in proving our main result. Let ÜG be a central

extension of a group G by an abelian group A. Let p : ÜG → G be the projection

map, s : G → ÜG be a section of p and τ be the 2-cocycle representing the class of
this central extension in H2(G,A) with respect to the section s. If f : G → G is
an automorphism (anti-automorphism) of G, then a lift of f is an automorphism

(anti-automorphism) f̃ : ÜG→ ÜG such that

p(f̃(g)) = f(p(g)),∀g ∈ ÜG.
Let L(f) denote the set of all lifts of f . The group Aut(G) acts on H2(G,A) by
f [σ] = [σ ◦ (f−1 × f−1)] for any 2-cocycle σ.

Proposition 3.2. The set L(f) is precisely described in terms of this action by the
following:

1) The set L(f) is non-empty if and only of f [τ ] = [τ ].
2) If L(f) is non-empty, then L(f) is a principal homogeneous space for the

group Hom(G,A) under the action

(φ.f̃)(g) = φ(p(g))f̃(g).

Remark 3.3. Let G = GL(2, F ) and ÜG = ÝGL(2, F ) be the metaplectic group with re-
spect to [c] ∈ H2(G,µ2). Let f ∈ Aut(G) be the automorphism f(g) = w0(g>)−1wo.
Since f is an involution, we have f−1 = f and it is easy to see that f [c]=[c]. Hence

there is a lift f̃ of f to ÜG.

We also need the following result (see Corollary 1 in [4] for a proof) which
discusses the continuity properties of the lift in the case when G = GL(n, F ). We
state it below for clarity.

Proposition 3.4. Let F be a non-Archimedean local field and suppose that the
group of nth roots of unity in F has order n. Let 〈 , 〉 be the nth order Hilbert

symbol on F and ÝGL(n) the corresponding metaplectic group. Then the lift of any

topological automorphism of GL(n) to ÝGL(n) is also a topological automorphism.

Remark 3.5. In the case when n = 2, clearly we have |µ2| = 2. Let G = GL(2, F )
and f ∈ Aut(G) be the continuous automorphism of G described above. Then for

the metaplectic group ÜG = gGL(2, F ), it is clear that any lift f̃ of f should also be
a topological automorphism.

4. A Lift of the standard involution

Let G = GL(2, F ) and ÜG = ÝGL(2, F ) be the metaplectic double cover of G. Let
τ be the standard involution on G. In this section, we explicitly define a lift σ and
show that it is an involution. We also discuss an important property of this lift (see
Theorem 4.11 below) which is crucial in proving the main result of this paper.

For λ ∈ F× and g =

�
a b
c d

�
∈ G, we let u(λ) =

�
λ 0
0 −λ

�
and ∆(g) = det(g). It

is easy to see that

τ(g) = w0g
>w0 = u(∆(g))g−1u(1).

For ε ∈ µ2, we again denote the element (1, ε) ∈ ÜG as ε. Let ũ(λ) = (u(λ), 1)

and z̃(λ) = (λI2, 1) where I2 is the 2 × 2 identity matrix. We extend ∆ to ÜG by

∆((g, ε)) = ∆(g). For h ∈ ÜG define

σ(h) = ũ(∆(h))h−1ũ(1).
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Before we discuss properties of σ, we need a proposition which is useful in ver-
ifying its properties. We state it below without proof. The details can be checked
easily using basic properties of the Hilbert symbol mentioned in Proposition 2.1.

Proposition 4.1. For h ∈ ÜG, we have

(1) hz̃(λ) = 〈λ,∆(h)〉z̃(λ)h.
(2) z̃(λ1)z̃(λ2) = 〈λ1, λ2〉z̃(λ1λ2).
(3) ũ(λ1)ũ(λ2) = 〈λ1,−λ2〉z̃(λ1λ2).
(4) ũ(λ)−1 = ũ(λ−1).
(5) ũ(λ1)z̃(λ2) = 〈λ1, λ2〉ũ(λ1λ2).

Lemma 4.2. σ is an anti-automorphism.

Proof. For h1, h2 ∈ ÜG, we have

σ(h1h2) = ũ(∆(h1h2))(h1h2)−1ũ(1)

= ũ(∆(h2)∆(h1))(h1h2)−1ũ(1)

= 〈∆(h1),∆(h2)〉 ũ(∆(h2))z̃(∆(h1))h−12 h−11 ũ(1)

= ũ(∆(h2))h−12 z̃(∆(h1))h−11 ũ(1)

= ũ(∆(h2))h−12 ũ(1)ũ(∆(h1))h−11 ũ(1)

= σ(h2)σ(h1).

�

Lemma 4.3. σ(ε) = ε.

Proof. It is enough to see this when ε is the non-trivial element in µ2. Indeed for
1 6= ε ∈ µ2 we have,

σ(ε) = ũ(∆(ε))ε−1ũ(1)

=

��
1 0
0 −1

�
, 1

���
1 0
0 1

�
,−1

���
1 0
0 −1

�
, 1

�
=

��
1 0
0 −1

�
,−1

���
1 0
0 −1

�
, 1

�
=

��
1 0
0 1

�
,−1

�
= ε.

�

Remark 4.4. We have used the following cocycle computations in the above proof.

1) c

��
1 0
0 −1

�
,

�
1 0
0 1

��
= 1.

2) c

��
1 0
0 −1

�
,

�
1 0
0 −1

��
= 1.

Lemma 4.5. σ is a lift of τ .
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Proof. It is enough to see this for h = (g, 1), where g ∈ G. We consider the cases
when c is either nonzero or zero. If c 6= 0, we have

σ(h) = (u(∆(g)), 1)(g−1, 1)(u(1), 1)

= (u(∆(g))g−1, 〈c,∆(g)〉)(u(1), 1)

= (u(∆(g)g−1u(1), 〈c,∆(g)〉)
= (τ(g), 〈c,∆(g)〉)
= (τ(g), 〈X(g),∆(g)〉),

and if c = 0, we have

σ(h) = (u(ad), 1)(g−1, 〈a, d〉)(u(1), 1)

= (u(ad)g−1, 〈−1, d〉)(u(1), 1)

= (u(ad)g−1u(1), 1))

= (τ(g), 1).

Thus, in both the cases, it is clear that (p ◦σ)(h) = τ(g) = (τ ◦ p)(h) and hence the
result. �

Remark 4.6. For ε ∈ µ2, we know that σ(ε) = ε. Hence, to compute σ(g, ε) for

arbitrary (g, ε) ∈ ÜG, it suffices to determine σ(g, 1). Suppose σ(g, 1) = (x, ξ), then
σ(g, ε) = (x, εξ) and hence x = (p ◦ σ)(g, ε) = (p ◦ σ)(g, 1). Now, it is easy to see
that σ is a lift of τ by applying the above computation to a more explicit form of
σ given above.

Remark 4.7. We have also used the following computations. For g ∈ G, it is easy
to see that

c(g, g−1) =

¨
〈c,−c〉, c 6= 0

〈a, d〉, c = 0

and hence

(g, 1)−1 =

¨
(g−1, 1), c 6= 0

(g−1, 〈a, d〉), c = 0.

Lemma 4.8. σ is an involution.

Proof. For h ∈ ÜG, observe that we have ∆(σ(h)) = ∆(h). Using the properties
mentioned in Proposition 4.1, it is easy to see that σ is an involution. Indeed,

σ((σ(h)) = σ(ũ(∆(h))h−1ũ(1))

= ũ(∆(h))ũ(1)hũ(∆(h)−1)ũ(1)

= 〈∆(h),−1〉z̃(∆(h))h〈∆(h)−1,−1〉z̃(∆(h)−1)

= 〈∆(h),∆(h)〉hz̃(∆(h))z̃(∆(h)−1)

= 〈∆(h),∆(h)〉h〈∆(h),∆(h)−1〉
= h.

�

Lemma 4.9. σ(h−1) = σ(h)−1 for all h ∈ ÜG.

Proof. It suffices to check this for h = (g, 1) where g ∈ G. We consider the cases
when c is either non-zero or zero. It is easy to see that

σ((g, 1)−1) =

¨
σ(g−1, 1) = (τ(g−1), 〈X(g−1),∆(g−1)〉), c 6= 0

σ(g−1, 〈a, d〉) = (τ(g−1), 〈a, d〉), c = 0
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and

σ(g, 1)−1 =

¨
(τ(g), 〈X(g),∆(g)〉)−1 = (τ(g)−1, 〈X(g),∆(g)〉), c 6= 0

(τ(g), 1)−1 = ((τ(g)−1, 〈d, a〉), c = 0.

Clearly, τ(g−1) = τ(g)−1 and 〈a, d〉 = 〈d, a〉. Therefore, it is enough to show
that 〈X(g−1),∆(g−1)〉 = 〈X(g),∆(g)〉. A simple computation verifies this. Indeed,

〈X(g−1),∆(g−1)〉 =

­
−X(g)

∆(g)
,

1

∆(g)

·
= 〈X(g),∆(g)〉〈−∆(g),∆(g)〉
= 〈X(g),∆(g)〉.

Hence the result. �

Having established the basic properties of σ, we now discuss a preliminary lemma
which we need to prove the main result of this section.

Lemma 4.10. Let S =
¦
h ∈ ÜG | σ(h) = xhx−1, for some x ∈ ÜG©. Then S is in-

variant under multiplication by ε and conjugation.

Proof. Let h ∈ S. Choose x ∈ ÜG such that σ(h) = xhx−1. Then,

σ(εh) = σ(ε)σ(h) = εxhx−1 = x(εh)x−1.

Hence it follows that εh ∈ S. Also, for y ∈ ÜG, we have

σ(yhy−1) = σ(y−1)σ(h)σ(y) = σ(y)−1xhx−1σ(y) = zhz−1

with z = (σ(y)x)
−1

. Hence, yhy−1 ∈ S. �

Theorem 4.11. For g ∈ ÜG, we have σ(g) = zgz−1 for some z ∈ ÜG.

Proof. Suppose that g =

�
0 v
1 w

�
∈ G. Note that v 6= 0 and let y =

�
1 0
−wv 1

�
. Let

h = (g, 1) and ỹ = (y, 1). We have τ(g) =

�
w v
1 0

�
and ygy−1 = τ(g). Now,

σ(h) = (τ(g), 〈X(g),∆(g)〉) = (τ(g), 1),

since X(g) = 1. A simple computation shows that c(y, g) = c(yg, y−1) = 1. It
follows that ỹhỹ−1 = σ(h). Indeed,

ỹhỹ−1 = (y, 1)(g, 1)(y, 1)−1

= (yg, 1)(y−1, 1)

= (ygy−1, 1)

= (τ(g), 1)

= σ(h).

Hence, h ∈ S. Suppose that g =

�
a 0
0 d

�
∈ G and k =

�
0 1
a 0

�
. Then, τ(g) = kgk−1.

Let h = (g, 1) and k̃ = (k, 1). Then, σ(h) = (τ(g), 1) and

k̃hk̃−1 = (k, 1)(g, 1)(k, 1)−1

= (kg, 〈a, d〉)(k−1, 1)

= (kgk−1, 〈a, d〉 〈a, d〉)
= (τ(g), 1)

= σ(h).
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Therefore, h ∈ S. Finally, suppose that

�
a 1
0 a

�
∈ G and h = (g, 1). Then

σ(h) = (τ(g), 1) = (g, 1) = h, so again h ∈ S.

Let h = (g, 1) ∈ ÜG. The element g is conjugate to one of the three types of
elements considered above. Thus, there is some x ∈ G such that (xgx−1, 1) ∈ S. Let
x̃ = (x, 1). Then x̃hx̃−1 = (xgx−1, ζ) with ζ ∈ µ2 and so x̃(hζ)x̃−1 = (xgx−1, 1) ∈
S. It follows that hζ ∈ S and hence h ∈ S. Finally, this implies that εh = (h, ε) ∈ S
and hence S = ÜG. �

5. Dualizing involutions on ÜG
For α ∈ F×, h ∈ ÜG, let σα(h) = 〈α,∆(h)〉σ(h). It is easy to see that σα is a

lift of τ for each α ∈ F× and is also an involution. In fact from Proposition 3.2,
it follows that any lift of τ is of the form σα for α ∈ F×. In this section, we show
that all the lifts σα of τ are dualizing involutions.

For the sake of clarity, we verify that σα is a lift of τ which is also an involution.
We also prove a technical lemma which we need to establish an important property
of σα.

Lemma 5.1. σα is an anti-automorphism of ÜG.

Proof. For g, h ∈ ÜG, we have

σα(gh) = 〈α,∆(gh)〉σ(gh)

= 〈α,∆(g)∆(h)〉σ(h)σ(g)

= 〈α,∆(g)〉〈α,∆(h)〉σ(h)σ(g)

= 〈α,∆(h)〉σ(h)〈α,∆(g)〉σ(g)

= σα(g)σα(h).

�

Lemma 5.2. For α ∈ F×, σα is an involution.

Proof. Let σα(h) = y. We have

σα(σα(h)) = σα(y)

= 〈α,∆(y)〉σ(y)

= 〈α,∆(h)〉σ(〈α,∆(h)〉σ(h))

= 〈α,∆(h)〉σ(εσ(h))

= 〈α,∆(h)〉σ(σ(h))σ(ε)

= 〈α,∆(h)〉〈α,∆(h)〉h
= h.

�

Remark 5.3. Let h = (h, ξh), σ(h) = g = (g, ξg). Then we get

y = σα(h) = 〈α,∆(h)〉σ(h) = (g, 〈α,∆(h)〉ξg).

Using the extension of ∆ to ÜG as defined earlier, we see that

∆(y) = ∆(g) = ∆(σ(h)).
10



Now using the fact that σ(h) = zhz−1 for some z ∈ ÜG, we see that

∆(σ(h)) = ∆(h)

and hence it follows that

∆(y) = ∆(h).

Lemma 5.4. Let h ∈ ÜG be such that ∆(h) 6∈ (F×)2. Then there exists u ∈ ÜG such
that

εh = uhu−1.

Proof. Since ∆(h) 6∈ (F×)2, using non-degeneracy of the Hilbert symbol, it follows

that there exists λ ∈ F× such that 〈λ,∆(h)〉 = −1. Let u ∈ ÜG be defined by

u =
� �λ 0

0 λ

�
, 1
�
.

A simple computation shows that

εh = uhu−1.

�

Remark 5.5. Let u =
� �λ 0

0 λ

�
, 1
�

and h =
� �a b
c d

�
, ξ
�
. To prove the above

lemma, we consider the cases when c is either zero or non-zero. In both these cases
we show that uh = εhu.

The following cocycles,

1) c
� �λ 0

0 λ

�
,

�
a b
c d

� �
=

¨
〈c, λ〉 if c 6= 0

〈d, λ〉 if c 6= 0

2) c
� �a b
c d

�
,

�
λ 0
0 λ

� �
=

¨
〈λ, c∆(h)〉 if c 6= 0

〈λ, d∆(h)〉 if c 6= 0

along with the fact that 〈λ,∆(h)〉 = −1 are useful in verifying the above computa-
tions.

Theorem 5.6. σα(h) is conjugate to h for any h ∈ ÜG.

Proof. Suppose ∆(h) ∈ (F×)2, then σα(h) = σ(h) and hence it follows that σα(h)
is conjugate to h. It is enough to consider the case when ∆(h) 6∈ (F×)2 and
〈α,∆(h)〉 = −1. The result now follows from Theorem 4.11 and Lemma 5.4. For
completeness, we give the details below.

σα(h) = 〈α,∆(h)〉σ(h)

= εσ(h)

= σ(εh)

= z(εh)z−1

= (zu)h(zu)−1.

�

Throughout, we let µeG denote the Haar measure on ÜG. We write Autc(ÜG) for

the group of continuous automorphisms of ÜG and R×>0 for the multiplicative group
of positive real numbers.

11



Lemma 5.7. Let γ ∈ Autc(ÜG). There exists cγ > 0 such that

µeG ◦ γ = cγµeG .
Proof. Let νeG = µeG ◦ γ. Clearly νeG is a left invariant Haar measure on ÜG. Indeed,
for g ∈ G, and U ⊂ G, we have

νeG(gU) = µeG(γ(gU))

= µeG(γ(g)γ(U))

= µeG(γ(U))

= νeG(U).

�

Lemma 5.8. For γ ∈ Autc(ÜG), the map

γ 7→ cγ : Autc(ÜG)→ R×>0

is a homomorphism.

Proof. For U ⊂ ÜG, we have

cγ1γ2µeG(U) = (µeG ◦ γ1γ2)(U)

= (µeG ◦ γ1)(γ2(U))

= cγ1(µeG ◦ γ2)(U)

= cγ1cγ2µeG(U).

�

Lemma 5.9. Let γ be any continuous automorphism of ÜG, and X a measurable

subset of ÜG. Suppose also that γ2 = 1. Then

(µeG ◦ γ)(X) = µeG(X),

i.e., γ preserves the Haar measure on ÜG.

Proof. Let K be any compact open subset of ÜG. Since K is open, using properties
of the Haar measure it follows that µeG(K) > 0. Since γ2 = 1, it is easy to see that
cγ = 1. Indeed,

cγµeG(K) = (µeG ◦ γ)(K)

= (µeG ◦ γ−1)(K)

= cγ−1µeG(K)

= c−1γ µeG(K)

It follows that cγ = 1 and hence the result. That is, for any X ⊂ ÜG we have

µeG(γ(X)) = µeG(X).

�

Let π be an irreducible admissible genuine representation of ÜG. For f ∈ C∞c (ÜG),

ρ ∈ Aut(ÜG) we define fρ(g) = f(ρ(g)) and πρ(g) = π(ρ(g)). Suppose that ρ is also
continuous and satisfies

1) ρ is an involution, i.e., ρ2 = 1 and

2) ρ(g) is conjugate to g−1 for any g ∈ ÜG.

12



In this case, we show that ρ is a dualizing involution. Before we proceed further,
we record a few simple observations which we need.

Lemma 5.10. For f ∈ C∞c (ÜG), we have

Θπρ(f) = Θπ(fρ).

Proof. It is enough to show that πρ(f) = π(fρ). Indeed, for v ∈ V , we have

πρ(f)v =

Z
eG f(g)πρ(g)vdg

=

Z
eG f(g)π(ρ(g))vdg

=

Z
eG f(ρ(g))π(g)vdg

=

Z
eG fρ(g)π(g)vdg

= π(fρ)v.

From this it follows that Tr(πρ(f)) = Tr(π(fρ)) and hence the result. �

Lemma 5.11. For g ∈ ÜGreg, we have

Θπ∨(g) = Θπ(g−1).

Proof. For f ∈ C∞c (ÜG), let f∨(g) = f(g−1). It is easy to see that

π∨(f) = πtr(f∨),

where πtr(f) is the transpose of the operator π(f). Since the trace is invariant
under taking transpose, it is clear that

Θπ∨(f) = Tr(π∨(f)) = Tr(πtr(f∨)) = Tr(π(f∨)) = Θπ(f∨).

The result follows. Indeed,

Θπ∨(f) =

Z
eG f(g)Θπ∨(g)dg

=

Z
eG f∨(g)Θπ(g)dg

=

Z
eG f(g−1)Θπ(g)dg

=

Z
eG f(g)Θπ(g−1)dg

= Θπ(f∨).

�

Proposition 5.12. Let ρ be a continuous automorphism of ÜG such that ρ(g) is

conjugate to g−1 for any g ∈ ÜG. Suppose also that ρ2 = 1. Then for any irreducible

admissible genuine representation π of ÜG, we have πρ ' π∨.
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Proof. For f ∈ C∞c (ÜG), we have

Θπρ(f) = Θπ(fρ)

=

Z
eG f(g)Θπρ(g)dg

=

Z
eG fρ(g)Θπ(g)dg

=

Z
eG f(g)Θπ(ρ(g))dg

=

Z
eG f(g)Θπ(xg−1x−1)dg

=

Z
eG f(g)Θπ(g−1)dg

From the above computation, it follows that Θπρ(g) = Θπ(g−1), for all g ∈ ÜGreg.
Thus Θπρ = Θπ∨ and πρ ' π∨. �

Remark 5.13. The above Proposition 5.12 also appears as Lemma 8.1 in [10]. We
have merely used an additional assumption that the continuous automorphism
which appears in that proof is also an involution. This leads to some minor simpli-
fication of some of the arguments which are used in that proof.

Proof of the Main Theorem : For α ∈ F× and g ∈ ÜG, let ρα(g) = σα(g−1).

Since σα is continuous (see Proposition 3.4 above), it follows that ρα ∈ Autc(ÜG)
for all α ∈ F×. Using the fact that σα(g) is a conjugate of g, it is clear that ρα is
a conjugate of g−1. The result now follows from Proposition 5.12 above.
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